methanol in methoxide6 to form dimethyl 1methoxy - 1 - methylcyclopropane - trans - 2,3 - dicarboxylate^{1e} (IV, $R = CH_3$), cleaved by hot dilute methanolic hydrochloric acid to dimethyl acetosuccinate. The supposed^{1g,i} anhydride of IV (R = H) is a γ -methyl- γ -methoxyitaconic anhydride, unsaturated to permanganate and decomposed by excess hot water to levulinic acid.

The diethyl ester of the Feist acid is isomerized at 240° to a substance considered¹ⁱ as diethyl 1-butyne-1,4-dicarboxylate. However, the isomerized ester shows no acetylenic infrared absorption: the most probable structure is a stereoisomer of ethyl 2-carboethoxycyclopropylideneacetate (V). Further investigations7 of these remarkable methylenecyclopropane derivatives, including reduction and reaction with diazo compounds (possible syntheses of spiropentanes), are under way.

(6) The stability of the Feist acid and esters in acid^{1a,b,i} evidences against α,β -unsaturation (contrast V¹⁾).

(7) Dr. J. H. Sturdivant and Mr. D. R. Petersen, California Institute of Technology, are analyzing the crystal structure of the Feist acid.

DEPARTMENT OF CHEMISTRY MARTIN G. ETTLINGER RICE INSTITUTE

HOUSTON, TEXAS

RECEIVED SEPTEMBER 2, 1952

THE EFFECT OF THE MEDIUM UPON HAMMETT'S SIGMA VALUES OF *p*-ALKYL GROUPS AND HYPERCONJUGATION

Sir:

For a number of p- and *m*-substituted anilines we compared the ionization constant in water (expressed as pK_a) with their catalytic constant in *n*-hexane (expressed as log k_c) on a prototropic rearrangement of a certain sulfone.1 A linear relation exists between pK_a and log k_c , the Brønsted relation²; the stronger the base, the higher its catalytic effect. However, it was found that ptoluidine deviated; its log k_c (in *n*-hexane) is smaller than is expected from its pK_a (in water).

The effect of substitution in aniline on pK_a and on $\log k_{\rm c}$ can also be expressed by means of Hammett relations.³ Hammett's substitution constant σ for p-CH₃ derived from the pK_a of p-toluidine in water (-0.19) is in accordance with the one given by Hammett (-0.170),³ the latter being derived from the ionization constant of p-toluic acid in water. However, a less negative value, viz., -0.08, is derived from log k_c of p-toluidine in *n*-hexane.

That the effect of p-CH₃ in p-toluidine depends upon the medium⁴ is, however, not restricted to this compound. With the aid of the values given by Hammett for the basic constants (log k_0 and ρ) of the recorded equilibria and reaction rates,⁵ we calculated σ for the p-CH₃ group in the following

(1) For details we refer to the thesis of H. Kloosterziel, Groningen, 1952, and to papers to be published in Rec. trav. chim.; cf. Abstracts of Papers, XIIth Intern. Congress of Pure and Applied Chemistry, New York, 1951, p. 444.

(2) J. N. Brønsted and K. J. Pedersen, Z. physik. Chem., 108, 135 (1924).

(3) L. P. Hammett, "Physical Organic Chemistry," New York, N. Y., 1940, Chapt. VII.

(4) There is another indication for this in the work by J. C. James and J. G. Knox, Trans. Far, Soc., 46, 254 (1950).

(5) Ref. 3, pp. 189-190.

media from the experimental data which Hammett used to compose his list of constants.⁶

Medium	Number of relations	σ
Water	9	-0.17
25-50% alcohol	3	-0.17
87–98% alcohol	5	-0.15
Alcohol	6	-0.14
Methanol	1	-0.11
Ether-alcohol	1	-0.105

Our own value in *n*-hexane (-0.08) fits excellently in this series and we conclude that the σ value for p-CH₃ depends upon the medium.

Many data recorded in the literature since the publication of Hammett's list of σ -values give a better agreement when this dependence is taken into account.

The same effect is found for 3,4-xylidine. From its pK_a in water⁷ as well as from the ionization constant of 3,4-xylenol in water a σ -value is found (-0.23) which is considerably more negative than the value derived from the log k_c of 3,4-xylidine in *n*-hexane (-0.10). The effect of the 3,4dimethyl grouping is about the sum of the effect of the m-CH₃ and the medium dependent effect of the p-CH₃ group.

The fact that p-toluidine but not m-toluidine showed the deviation in the Brønsted relation, led us to suspect that the phenomenon known as hyperconjugation (Baker-Nathan effect) was involved.⁸ Further evidence for this view was obtained from the observation that in the series p-CH₃, p-C₂H₅, p-*i*-C₃H₇ and p-*t*-C₄H₉ aniline the deviation from the Brønsted relation became smaller. In the same sequence hyperconjugation decreases.8

This is in accordance with recent data of Herbst and Jacox.⁹ These authors derived the σ -values of *p*-alkyl groups from the rate of hydrolysis of p-alkyl benzoates in 87.8% alcohol and compared the values thus found with Hammett's values, derived from the ionization constants of *p*-alkylbenzoic acids in water. They found less negative values for p-CH₃ and p-C₂H_b, but agreeing values for p-*i*-C₃H₇ and p-*t*-C₄H₉.

(6) Some data have been disregarded for obvious reasons, cf. L. P. Hammett, THIS JOURNAL, 59, 96 (1937).

(7) F. Kieffer and P. Rumpf, Compt. rend., 230, 2302 (1950).

(8) For a recent monograph, see J. W. Baker, "Hyperconjugation," Oxford Press, New York, N. Y., 1952.

(9) R. L. Herbst and M. E. Jacox, This Journal, 74, 3004 (1952). OPCANIC CHEMICAL LABORATORY

STATE UNIVERSITY	н. н	KLOOS	TERZIEL
Rectived October 20, 19	52	п. ј.	DACKER

THE π HELIX—A HYDROGEN BONDED CONFIGURATION OF THE POLYPEPTIDE CHAIN Sir:

In a recent letter, Dr. M. L. Huggins¹ proposed a new helical polypeptide chain configuration as a possible alternative to the Pauling-Corey α helix.² In the Huggins structure, the amide group is not planar and, as Pauling and Corey³ have observed, the strain energy is great in comparison with the

(1) M. L. Huggins, THIS JOURNAL, 74, 3963 (1952).

L. Pauling and R. B. Corey, *ibid.*, **72**, 5349 (1950).
L. Pauling and R. B. Corey, *ibid.*, **74**, 3964 (1952).